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Abstract — For magnetodynamic problem decomposed into 
subdomains, the Mortar method can be associated with 
potential formulations to connect nonconforming meshes. In 
this paper, we propose to use the bi-orthogonal nodal shape 
functions with the Mortar method in the case of A-ϕϕϕϕ 
formulation. An academic example will be studied to shown 
the accuracy of the proposed model.     

I. INTRODUCTION 

To model electromagnetic devices, the finite element 
method is used. In order to minimize the mesh, numerical 
methods based on the domain decomposition can be used. 
The studied system is divided into several sub-domains, 
according to their dimensions and their sizes. Each sub-
domain is discretized independently. The Mortar method 
can be used to connect the solution of different non-
conforming meshes. In the case of magnetodynamic 
problem, the electric A-ϕ formulation can be used. From the 
Mortar method, a relation associated with each potential 
must be defined. These relations are introduced in order to 
verify the continuity of the fields. The drawback of this 
approach is the inversion of submatrixes associated with the 
connection of the solution in non-conforming meshes. In 
order to avoid this constraint, the bi-orthogonal shape 
functions can be used [1, 2]. 

In this communication, we propose to investigate the use 
of the bi-orthogonal shape functions with the Mortar 
method and the A-ϕ formulation. The numerical model is 
presented and an academic example is analyzed.  

II.  NUMERICAL MODEL 

A.  A- ϕ formulation  

Let us consider a domain D of boundary Γ (Fig. 1). D is 
divided into two subdomains D1 and D2 of boundary Γ1 and 
Γ2 respectively (D=D1∪D2). Both subdomains are separated 
by a boundary denoted ΓR. In D, a conducting part DC of 
boundary ΓC belonging to D1 and D2 through by ΓR is 
considered.  

 

Γr 

D1 

µ0µr 

 µ0 

 

n1 
D2 

Dc 

 
n2 

Js1 
Js2 

σ 

ΓB 
ΓH 

ΓB 

ΓH  
Fig. 1: Studied domain 

Using the formulation in term of vector potential A and 
scalar potential ϕ, the weak formulation to solve in each 
subdomain k can be written such that: 
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        with Φ a magnetic flux, N and K  are the source 
fields (curl K = N) associated with Φ [3], Js1 and Js2 the 
current density in two inductors. In your development, the 
components of N and K  are equal to zero on Γr. (.,.)Dk 
indicates the scalar product on the domain Dk, <.,.>Γk the 
scalar product on Γk and ∂t the time derivative. In these 
expressions, A 'k and ϕ'k represent the test functions which 
are chosen in the same discrete space that the shape 
functions of A and ϕ respectively. Taking into account the 
boundary conditions and the properties of A'k in (1), the 
surface integral term on Γk which corresponds to the 
tangential component of the magnetic field can be reduce to 
Γr. In the same way, in (2), the surface integral term which 
corresponds to the normal component of the current density 
can be reduced on Γrc.  

B. Continuity at the interface ΓR 

To ensure the continuity of the fields at the interface ΓR, 
the classical next conditions must be verified: 

tΓ22Γ11
rr

HnHnH =∧−=∧           (3) 

nΓ22Γ11
rcrc

.. JnJnJ =−=             (4) 

where J1 and J2 the eddy current in DC. Moreover, we also 
must verify the continuity of both potentials on Γr such that: 

0',
rΓ

21 =− AAA  and     0',
rcΓ

21 =− ϕϕϕ .       (5) 

with A' and φ' test functions so that the choice is introduced 
in the next section. 

C. Discrete form 

At this step of the analysis, we must discretize the potentials 
Ak and ϕk, the fields H t and Jn and define the test functions 
A'k, ϕ'k, A ' and ϕ'. Using Witney's element the vector 
potential Ak is naturally discretized in the edge element 
space and the scalar potential ϕk in the nodal element space 
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[4]. Consequently, using the Galerkin method, A'k and ϕ'k 
take the form of edge and nodal elements respectively. On 
Γr, the tangential component of magnetic field H t and the 
normal component of the induced current Jn belonging to 
Γrc are respectively discretized in the edge and nodal 
element space. At last, the test functions A' and ϕ' on Γr are 
taken in the same space than H t and Jn respectively. In these 
conditions, the discrete form of (5-a) and (5-b) are written 
under the matrix form: 

  CeA1Γr= DeA2Γr   and   Cnϕ1Γr= Dnϕ2Γr                       (6) 

where A1Γr and A2Γr represent the vector of the circulations 
of the vector potential on Γr and ϕ1Γr and ϕ2Γr the vector of 
nodal values of the scalar potential on Γrc. The elementary 
terms of the matrix Ce and De take the form: 

rc
ei Γ

ej
'

jei, w,wc =     and  
rc

ei ek
'

kei, w,wd
Γ

=  (7) 

with wej and wek the edge shape functions associated with 
A1 and A2 respectively and w'ei the test function. The matrix 
Cn and Dn are defined similarly with nodal shape functions.  
In (5-a) and (5-b), the integral surface term on Γr, written in 
discrete form, depend on the same shape functions than the 
discrete continuity relations on (6). Consequently, they can 
be written: 

      FH1Γr=Ct
eHΓr   and   FH2Γr=Dt

eHΓr               (8) 

FJ1Γr=Ct
nJΓr   and   FJ2Γr=Dt

nJΓr                (9) 

At this step of the analysis, using the Mortar method, it is 
possible to substitute the unknowns A1ΓR and ϕ1ΓR and 
combining FE equations system such that it is not necessary 
to calculate HΓr and JΓr. Nevertheless, we must compute the 
inverse of the matrixes Ce and Cn. To simplify theirs 
computations, it is possible to define bi-orthogonal shape 
functions for w'e and w'n [1, 2]. In these conditions, the 
matrix Ce and Cn begin diagonal. It is possible to find bi-
orthogonal shape functions for nodal element and classical 
edge element. Unfortunately, it is known that the classical 
edge element used in Mortar method induced numerical 
error on the boundary of non-conforming mesh. To avoid 
this difficulty, a second family of edge element is classically 
used [5]. Consequently, for edge elements, we propose to 
build the test functions w'e from bi-orthogonal nodal 
function w’

n. In this case, we have: 

 '
nj

'
niji,e ww' gradw =      .       (10) 

The matrix Ce is not diagonal but the number of terms is 
notably reduced. 

III.  APPLICATION 

The proposed approach has been used to model a 
conducting hollow sphere crossed by a sinusoidal flux 
density. The conductivity is equal to 107(Ωm)-1 and the 
maximal value of magnetic flux density to 1T. To study the 
system, two meshes have been considered. The first one M1 
is fine and the second M2 is composed with a part of M1 
and a coarse complementary mesh (Fig. 2).  
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Fig. 2: Studied example (2.a) and part of the mesh M2 (2.b) 

 

In Fig. 2, we can see that the boundary ΓR crosses 
horizontally the sphere. With the three meshes, the 
modeling has been done for a frequency of 100Hz. In Fig. 
3, the losses powers in the sphere in function of time are 
presented. We can observe that the results obtained from 
M1 and M2 meshes give the same results. 
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Fig. 3: Losses powers in the sphere with fine and  
non-conforming meshes  

IV. CONCLUSION 

In this paper, the Mortar method has been used to 
connect non-conforming meshes in magnetodynamic 
problem. To reduce the memory space, the bi-orthogonal 
nodal functions have been used. For the edge functions, we 
propose to define the second family built from bi-
orthogonal nodal functions. As example of application, a 
hollow sphere is studied and the obtained results with a non-
conforming mesh are in good agreement compared with a 
fine mesh. The method can be applied to the magnetic T-Ω 
formulation. 
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